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Abstract. The electric quadrupole contribution to the scattering length is derived using an
atomic model for the resonant ion. At one of the levels of approximation considered, our so-
called idealized scattering length is totally consistent with the standard sum rules for the analysis
of the attenuation coefficient. A superior estimate of the scattering length includes the structure
of the core state.

The two levels of treatment are used to discuss the intensity of x-rays Bragg diffracted
by resonant lanthanide ions in a crystal. Using a ground state for the valence shell specified
by Hund’s rules, explicit expressions for the idealized scattering length are tabulated for the
tripositive ions.

The general expressions for the scattering length can be evaluated for a valence-shell wave
function of an arbitrary complexity. Thus, our scattering lengths can accommodate the influence
of a crystal-field potential or a full multiplet calculation.

Linear and circular polarization in the primary and secondary beams of x-rays are handled
in terms of a Stokes vector, and several illustrative calculations are given.

1. Introduction

Resonance enhancement of the magnetic diffraction of x-rays seems to have been first
reported by Namikawaet al (1985), in a paper on x-ray scattering from ferromagnetic nickel
at an energy very close to the K-shell absorption edge. Later, and inspired by observations
reported by Gibbset al (1988), Hannonet al (1988) argued that the enhancement is due to
electric multipole absorption events. Their selection rules for the polarization dependence
of the diffracted signal have been confirmed in a number of experiments on a variety of
magnetic materials; for references to the experimental studies see, for example, Hill and
McMorrow (1996) and Lovesey and Collins (1996).

At an energy well above the absorption edges, the amplitude for magnetic diffraction is
very small compared to the amplitude for charge diffraction. Hence, resonance enhancement
of the magnetic amplitude, typically by an order of magnitude or more, is a significant and
most welcome help in using x-ray Bragg diffraction to study the properties of unpaired
electrons in crystalline materials.

Materials that contain lanthanide ions are good candidates for such studies, and their
magnetic properties are both intriguing and of great interest for some applications. At the
L2 and L3 absorption edges of the ions the observed enhancements of the diffraction signal
are very healthy. In consequence, magnetic signals can be measured with a good accuracy
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relatively quickly, particularly when the Bragg position is nominally purely magnetic in its
character, e.g. a magnetic satellite reflection from a spiral arrangement of the resonant ions.
Moreover, the energies of the L2 and L3 edges, e.g. for terbium: 8.3 keV and 7.5 keV,
respectively, correspond to wavelengths that are very suitable for diffraction studies (the
wavelength inÅ of radiation with an energyE in keV is 12.4/E).

The interpretation of data on E1 (dipole) absorption events in terms of valuable atomic
quantities is not straightforward. This is because the magnetism of the 4f electrons is seen
to the extent that it influences the 5d band into which the ejected 2p electron is promoted.

By comparison with E1 absorption events, the interpretation of E2 (quadrupole) events,
in which a 2p electron is replaced by a hole from the 4f valence shell, should be relatively
straightforward. For lanthanide ions an atomic model is a realistic starting point. Such a
model has been successfully used to understand the E2 contribution to the dichroic signal
in the attenuation coefficient at the L3 edge of Yb in YbFe2 (Giorgetti et al 1995). For
the configuration f13, appropriate to Yb3+, selection rules act to simplify the pattern of E1
and E2 contributions at the L2 and L3 edges, and Giorgettiet al (1995) obtain conclusive
results on the E2 contribution largely as a result of their judicious choice for the resonant
ion. For other ions the relative contributions from the E1 and E2 absorption edges are much
more of an open question. Recently, van Veenendaalet al (1997) have addressed it, in a
framework that is based on an atomic model, and have reviewed why E2 events are not
clearly separated from E1 events in the attenuation coefficient. The E2 contribution to the
cross-section for Bragg diffraction from SmNi2B2C has been used by Detlefset al (1997)
to refine details of the orientation of the Sm moment in the antiferromagnetic state.

In the present work we use an atomic model to calculate the contribution to the resonant
scattering length,f , made by an E2 absorption event. The attenuation coefficient is obtained
from the imaginary part off , evaluated for a forward-scattering geometry. An example of
this type of calculation is given by Lovesey (1996), in which the attenuation coefficient for
Yb3+ used by Giorgettiet al (1995) is rederived. The cross-section for Bragg diffraction
is determined by|f |2, and this is the topic that we now address. Our results apply to
lanthanide ions with local principal axes of quantization at an arbitrary orientation with
respect to the axes used to describe the geometry of the diffraction experiment.

The scattering length is defined in the next section. An idealized form off , developed
by Lovesey and Balcar (1997a), is used in section 3 to describe diffraction at the L2 and L3

edges. A few examples are discussed in section 4. (The idealized scattering length contains
the standard sum rules used in the interpretation of circular dichroic signals in the attenuation
coefficient.) A superior estimate of resonance-enhanced scattering is given in section 5, and
it is illustrated in an application to terbium. In the new estimate, the scattering length
contains structure coming from the core state. The cross-section for partial polarization in
the primary beam is taken up in section 6, and the expression given is illustrated with a
calculation of the intensity at a first-order satellite from a spiral arrangement of lanthanide
ions. Partial polarization in the secondary beam is also discussed. A brief summary of our
findings is found in section 7.

2. Scattering length

We consider the elastic diffraction of x-rays, in which the valence electrons of the resonant
ion are in the same equilibrium (discrete) state before and after the scattering event. A state
of the valence shell is labelled byµ. The quasi-discrete intermediate states of the ion are
labelled by{η}, and they have energiesEη − iγη/2, whereγ /h̄ is the total probability of
all possible processes by which an intermediate state can decay. It is convenient to define
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1 = Eη − Eµ.
The primary and secondary x-rays have wave vectorsq andq′. The x-rays are deflected

through an angleθ (=twice the Bragg angle) andk = 2q sin(θ/2), with the primary energy
E = h̄cq.

Let the vectors{R0} define the positions of the resonant ions. The Debye–Waller factor
exp{−W(k)} might depend on the position of the ion in the crystal.

The mean value of the scattering length is denoted by〈f 〉, where the angular brackets
indicate that an appropriate average is taken with respect to all quantities that are degenerate
in f . ForE close to1,

〈f 〉 = −(qe)2
∑
R0

exp{−W(k)+ ik ·R0}
{ 〈Z(µ;µ′:R0)〉
E −1+ (i/2)γ

}
η

. (2.1)

In the idealized scattering length, used in the next section,η refers to the total angular
momentum,J̄ , of the core state into which the primary photon is absorbed. For the L2 and
L3 edgesJ̄ = 1

2 and 3
2, respectively. Looking ahead to section 5, the scattering length used

there depends on̄J and the associated magnetic quantum number,M̄.
Atomic quantities associated with the valence shell enter〈f 〉 through〈Z(µ;µ′:R0)〉.

This is a diagonal matrix element, or a mean value, which, in general, is a sum of
matrix elementsZ(µ;µ:R0) and Z(µ;µ′:R0) weighted by factors that are determined
by interactions that perturb the valence shell. We will assume that the wave function for the
valence shell is taken from oneJ -manifold. Hence, all of the atomic quantum numbers (S,
L, J and the seniority) are common inµ andµ′ apart from the magnetic quantum numbers
M andM ′. In the calculation, the latter appear only in the Clebsch–Gordan coefficient,
or 3j -symbol, in the Wigner–Eckart theorem. The degeneracy off with respect to the
magnetic quantum numbers is removed by the action of the molecular field responsible for
the spontaneous magnetic order in the crystal. Hence, the thermodynamic properties of
the resonant ion appear in〈f 〉 through 3j -symbols averaged with respect to the magnetic
quantum numbers.

3. Idealized scattering length

A matrix element for E2 absorption is (Lovesey 1996)

Z(µ;µ′:R0) = 8
∑
K

(−1)K(2K + 1)1/2
{

2 K 2
3 1 3

}∑
m0

〈µ|T Km0
|µ′〉(xyz)H (K)

−m0
(−1)m0.

(3.1)

The argument of the 6j -symbol is correct for a valence shell with angular momentuml = 3,
and a triangle condition limits the integerK to the range 06 K 6 4. For l = 3,

8 = 3

10
(q〈2p|R2|4f 〉)2 (3.2)

and, in units of the square of the Bohr radius, the radial integral〈2p|R2|4f 〉 ∼ 0.002. Note
that 8 is proportional toE2 and the scattering length for an E2 event is proportional to
E4. Due to this dependence on energy of the scattering length, the cross-sections at the
L2 and L3 edges of terbium have a relative weighting that is=(8.3/7.5)8 = 2.5, and the
corresponding factor for samarium is 3.0.

The spherical tensorH(K) is defined by Lovesey (1996). It depends on the polarization
vectors and directions of the primary and secondary beams. Here we consider a primary
beam with complete polarization perpendicular to the plane defined byq andq′, the plane of
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Table 1. The components ofC(K) ·H(K) are shown forK = 0 toK = 4. For eachK there are
two components labelled by the state of polarization in the secondary beam, namely,σ ′ andπ ′.
The primary beam is purelyσ -polarization. In the far left-hand column, in round brackets, there
is a factor that is common to the two components. The values ofH(K) are slightly different
from the definition given by Lovesey (1996). The difference is a multiplicative constant chosen
to make the factor in the left-hand column a rational fraction; forK = 0 toK = 4 the constant
that multiplies the original definition ofH(K) is 1/

√
5, 1/
√

10, 1/
√

14, 1/
√

10 and 1/
√

70. The
functionC(K)q (β, α) is a spherical harmonic with the normalization suggested by Racah, which

givesC(0)0 (β, α) = 1. Note that forK odd, entries are purely imaginary, and the other entries
are purely real. States of linear and circular polarization are discussed in section 6, together
with the corresponding cross-section.

σ ′σ π ′σ

K = 0 (1/10) cosθ 0

K = 1 (i/20) sinθ cosβ − sin( 3
2θ + α) sinβ

K = 2 (−1/56) (1/2) cosθ(1+ 3 cos 2β) 3 cos( 3
2θ + α) sin 2β

+(3/2)(cos 2β − 1) cos 2α

K = 3 (−i/80) sinθ(3 cosβ + 5 cos 3β) (3/4) sin( 3
2θ + α)(sinβ + 5 sin 3β)

+(5/4) sin( 1
2θ + 3α)(3 sinβ − sin 3β)

K = 4 (−1/2240) cosθ(9+ 20 cos 2β + 35 cos 4β) (5/2)[cos( 3
2θ + α)(2 sin 2β + 7 sin 4β)

+5(3+ 4 cos 2β − 7 cos 4β) cos 2α +7 cos( 1
2θ + 3α)(2 sin 2β − sin 4β)]

scattering, since this is frequently the arrangement used in experiments. (Section 6 contains
the cross-section for a primary beam with linear polarization and circular polarization.) In
keeping with current usage, this state of polarization in the primary beam is labelledσ -
polarization and the orthogonal case of polarization in the plane of scattering is labelled
π -polarization. For our present purposes, all of the necessary values ofH(K) appear in
table 1.

The atomic matrix element〈µ|T Km0
|µ′〉 depends on the position of the ion in the crystal

through the orientation of its axes of quantization relative to the axes for the geometry of
the experiment, in whichH(K) is calculated. In general, these two sets of axes will not
coincide, and the local principal axes of quantization for each ion in the magnetic unit cell
will be different.

The axes for the geometry of the experiment are denoted by(x, y, z). Following the
convention adopted by Lovesey and Collins (1996), the unit vectorsx̂, ŷ and ẑ are

2 sin(θ/2)x̂ = q̂′ − q̂ (3.3a)

2 cos(θ/2)ŷ = q̂′ + q̂ (3.3b)

and

sin(θ)ẑ = q̂′ × q̂. (3.3c)

The axes of quantization for an ion relative to(x, y, z) are defined by three Euler anglesα,
β andγ , and for these we follow the convention used by Judd (1975). The principal axis
of quantization for an ion is

m = x̂ cosα sinβ + ŷ sinα sinβ + ẑ cosβ. (3.4)

Let us now turn to the relation between the atomic matrix elements in the two sets of axes.
The matrix element of the atomic spherical tensorT Km0

in the local principal axes of
magnetic quantization is denoted simply by〈µ|T Km0

|µ′〉. The corresponding matrix element



XRD enhanced by an E2 resonance 505

in the axes(x, y, x), which is required in the formula (3.1), is denoted by〈µ|T Km0
|µ′〉(xyz).

One finds

〈µ|T Km0
|µ′〉(xyz) =

∑
Q

〈µ|T KQ |µ′〉D(K)Qm0
(−γ,−β,−α) (3.5)

whereD(K) is an element of the rotation matrix. We will assume that, in the local principal
axes of quantization, the atomic matrix element is diagonal with respect to the magnetic
quantum numbers. (This assumption is not valid if the perturbation of the valence shell by
the ligand crystal-field potential is very strong.) SettingM = M ′ in (3.5) means that on the
right-hand side all terms in the sum are zero except the term withQ = 0. One then finds

〈µ|T Km0
|µ′〉(xyz) = C(K)m0

(β, α)〈µ|T K0 |µ′〉 (3.6)

in whichC(K)m0
(β, α) is a spherical harmonic with a normalization such thatC

(0)
0 (β, α) = 1.

Using (3.6) in (3.1) one is left to calculate∑
m0

C(K)m0
(β, α)H

(K)
−m0

(−1)m0 = C(K) · H(K) (3.7)

and our results are given in table 1. In calculating the entries we have used the relation

H
(K)
−m0
= (−1)K+m0{H(K)

m0
}∗.

Notice that, with the assumed simple wave function for the valence shell, the matrix element
(3.1) depends on two of the three Euler angles. We will have more to say about the entries
in table 1 in the next section.

The atomic matrix element on the right-hand side of (3.6) is taken to be

〈µ|T K0 |µ〉 = (−1)J−M
(
J K J

−M 0 M

)
(νSLJ ||T (K: J̄ )||νSLJ ). (3.8)

The reduced matrix element in (3.8) is given by Lovesey and Balcar (1997a) in terms of
Racah unit tensors. In the next section we provide some illustrative examples of the reduced
matrix elements, calculated for lanthanide ions. The quantum numbersν, S, L andJ are
determined by Hund’s rules. As is well known, the ground states of lanthanide ions are
very pure, i.e. a state determined by Hund’s rules is a good approximation to the ground
state.

It is appropriate to comment on an aspect of our use of Racah unit tensors that reflects
both on the sign of the magnetic quantum number taken in (3.8), and the definition of a
state constructed with holes. The absorption event of interest to us involves a photo-emitted
electron taking up a state in the valence shell. In consequence, the atomic matrix elements
in the scattering length,f , include empty states in the valence shell. Fortunately, matrix
elements for empty states and occupied states are very simply related. So, in our theoretical
framework,f is a mean value constructed with a wave function of the electrons in the
valence shell rather than the holes in the shell, in which there is less physical interest.

We explore the relation between empty and occupied states in terms of matrix elements
of the Racah unit tensorW(ab)K , where a and b are the ranks of the spin and orbital
operators, and the integerK satisfies the triangle condition|a − b| 6 K 6 (a + b). Let
us denote the eigenvectors of the empty and occupied states of thenl-shell by |emp.〉 and
|occ.〉. Evidently,∑

|emp.〉〈emp.| +
∑
|occ.〉〈occ.| = 1.

The wave function|µ〉 of the electrons in the shell is constructed from{|occ.〉}. Similarly,
from {|emp.〉}, construct|8emp〉. For the closed shell the wave function of the electrons is
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denoted by|8〉. With these definitions, and the foregoing statement of closure for the states
of the valence shell, we are led to the identity

〈8emp|W(ab)K |8emp〉 = 〈8|W(ab)K |8〉 − 〈µ|W(ab)K |µ〉. (3.9)

The diagonal matrix element for a closed shell has the following properties. Fora+ b > 0,

〈8|W(ab)K |8〉 = 0

and fora + b = 0 the matrix element is proportional to 2(2l + 1). Thus, fora + b > 0 the
matrix element involving empty states, that naturally arises inf , is equal in magnitude and
opposite in sign to the matrix element for the occupied (electron) states. Fora + b = 0 the
matrix element for the empty states is proportional to 2(2l + 1)− ne = nh.

For a + b > 0, the matrix elements withnh empty states, found inf , are constructed
from the matrix elements withne = 2(2l + 1) − nh electrons, namely,〈µ|W(ab)K |µ〉. The
quantum numbers seniority,S and L for the nh empty states and thene electron states
are the same;|lnhνSL〉 and |lneνSL〉 with nh + ne = 2(2l + 1) are often called conjugate
configurations, or states. We separately considera + b = even integer anda + b = odd
integer. Fora + b even the minus sign in (3.9) is included in the values of〈µ|W(ab)K |µ〉
that we have tabulated in previous papers. Hence, for this case, use of our tables gives the
correct result forf . We have decided to deal witha+b odd in a different way, and a minus
sign is not included in the tabulated quantities. Our reason for not including a minus sign
is to adhere to a standard definition of a hole state, which amounts to defining the saturated
ion byM = +J or −J . We later have more to say about the topic of hole states. For the
moment, though, we note that for a non-zero matrix element it is necessary thata + b+K
is an even integer, and matrix elements with|µ〉 = |JM〉 and |µ〉 = |J,−M〉 satisfy

〈J,−M|W(ab)K |J,−M〉 = (−1)K〈JM|W(ab)K |JM〉.
Hence, for a one-component wave function anda + b odd, there is a one-to-one corres-
pondence between a state with quantum numbersJ,−M appearing inf and a state of the
electrons labelled byJ,M.

Our adopted definition of a hole state,|h〉, constructed from the empty states of a shell,
uses a correspondence with a state of the occupied (electron) states,|µ〉, such that mean
values of the spin and orbital angular momentum operators satisfy

〈h|S|h〉 = 〈µ|S|µ〉 and 〈h|L|h〉 = 〈µ|L|µ〉.
We recall that a matrix element ofS (L) is constructed withW(10)1 (W(01)1). Also, S and
L are time-odd operators; for example,

θ−1Sθ = −S
whereθ is the time-reversal operator. In view of (3.9), the above-mentioned one-to-one
correspondence is realized with

|h〉 = θ |8emp〉
since, following Lovesey (1986),

〈h|S|h〉 = 〈8emp|θ−1Sθ |8emp〉∗ = −〈8emp|S+|8emp〉 = −〈8emp|S|8emp〉 = 〈µ|S|µ〉
i.e. the hole state is created by the time-reversal operator from the empty state. If one uses
the eigenstates|JM〉 of the angular momentum

|8emp〉 =
∑
JM

Q(J,M)|JM〉
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and the set of numbersQ(J,M) define|8emp〉. We then find

|h〉 =
∑
JM

Q∗(J,M)(−1)J+M |J,−M〉.

For the special case in which all but one of theQ(J,M) are zero, we may take

|h〉 = (−1)J+M |J,−M〉
and, sinceJ +M is an integer,

〈h|S|h〉 = 〈J,−M|S|J,−M〉.
The correspondence expressed by this result is the motivation for our treatment of the odd-
rank Racah unit tensors and their matrix elements. We rely on an external magnetic field
to define the axis of quantization for the electron states.

Table 2. The entries in the table are analytic expressions forFJ (K) defined in (3.10) as the
ratio of two 3j -symbols. The denominator is the value of theM-polynomial in the numerator
evaluated forM = J . Hence, for a saturated magnetic ion,FJ (K) has a magnitude of one, for
all K.

K = 1 〈M〉/J

K = 2 〈3M2 − J (J + 1)〉/{J (2J − 1)}

K = 3 〈M{5M2 + 1− 3J (J + 1)}〉/{J (J − 1)(2J − 1)}

K = 4 〈35M4 + 5M2{5− 6J (J + 1)} + 3J (J 2 − 1)(J + 2)〉/{2J (J − 1)(2J − 1)(2J − 3)}

The thermodynamic properties of an ion that arise in〈f 〉 derive from the 3j -symbols
averaged with respect to theM-degeneracy. It proves convenient to use a function

FJ (K) =
〈
(−1)J−M

(
J K J

−M 0 M

)〉(
J K J

−J 0 J

)−1

(3.10)

in which the angular brackets denote the thermal average with respect to the 2J + 1 values
of M. One findsFJ (0) = 1, and analytic expressions forFJ (K) with K > 0 are found in
table 2.

In the event that in order to achieve a fully realistic description of the valence shell
one needs to use a wave function that is a linear combination of several states, each with
a different value ofM, the mean value ofZ(µ;µ′:R0) will be a linear combination of
quantities proportional to

(νSLJ ||T (K: J̄ )||νSLJ )
∑
Q

(−1)J−M
(
J K J

−M Q M ′

)
D(K)Qm0

(−γ,−β,−α). (3.11)

From this expression it is evident that, for states drawn from a singleJ -manifold, in
〈f 〉 the reduced atomic matrix element is a common factor. So, while use of a simple
wave function, with only oneM-state, might lead in〈f 〉 to an approximate description of
the thermodynamic properties of the resonant ion, the specification of the atomic state is
completely correct.
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Table 3. The function9µ(K) is defined in equation (4.2). Apart from the factors listed in
the caption to table 1, the quantities listed in the table are the coefficients ofFJ (K) in (4.2),
evaluated for the tripositive lanthanide ions. The quantum numbers in the labelµ are determined
by Hund’s rules.

Ce3+ f 1 nh = 13 2F5/2 Dy3+ f 9 nh = 5 6H15/2

K = 0 13
42[(2J̄± + 1)± 8

39] K = 0 5
42[(2J̄± + 1)± 2

3 ]

K = 1 20
441[(2J̄± + 1)∓ 29

10] K = 1 5
63[(2J̄± + 1)± 6

5 ]

K = 2 2
49[−(2J̄± + 1)± 31

9 ] K = 2 1
21[−(2J̄± + 1)± 4

3 ]

K = 3 5
294[(2J̄± + 1)∓ 68

15] K = 3 [± 1
63]

K = 4 11
882[−(2J̄± + 1)± 76

11] K = 4 2
63[(2J̄± + 1)∓ 5

2 ]

Pr3+ f 2 nh = 12 3H4 Ho3+ f 10 nh = 4 5I8

K = 0 2
7[(2J̄± + 1)± 1

3 ] K = 0 2
21[(2J̄± + 1)± 1]

K = 1 8
105[(2J̄± + 1)∓ 82

45] K = 1 2
21[(2J̄± + 1)± 16

15]

K = 2 104
2475[−(2J̄± + 1)± 12

13] K = 2 2
105[−(2J̄± + 1)± 1]

K = 3 [± 884
17325] K = 3 1

42[−(2J̄± + 1)± 4
5 ]

K = 4 2
99[(2J̄± + 1)∓ 20

3 ] K = 4 1
42[(2J̄± + 1)± 4

3 ]

Nd3+ f 3 nh = 11 4I9/2 Er3+ f 11 nh = 3 4I15/2

K = 0 11
42[(2J̄± + 1)± 14

33] K = 0 1
14[(2J̄± + 1)± 4

3 ]

K = 1 1
11[(2J̄± + 1)∓ 94

77] K = 1 2
21[(2J̄± + 1)± 19

15]

K = 2 2
121[−(2J̄± + 1)∓ 28

15] K = 2 2
105[(2J̄± + 1)± 1]

K = 3 28
1573[−(2J̄± + 1)± 35

18] K = 3 1
42[−(2J̄± + 1)∓ 4

5 ]

K = 4 68
4719[(2J̄± + 1)± 77

17] K = 4 1
42[−(2J̄± + 1)± 4

3 ]

Pm3+ f 4 nh = 10 5I4 Tm3+ f 12 nh = 2 3H6

K = 0 5
21[(2J̄± + 1)± 7

15] K = 0 1
21[(2J̄± + 1)± 5

3 ]

K = 1 4
45[(2J̄± + 1)∓ 60

77] K = 1 5
63[(2J̄± + 1)± 8

5 ]

K = 2 28
1815[(2J̄± + 1)∓ 28

15] K = 2 1
21[(2J̄± + 1)± 4

3 ]

K = 3 28
1815[−(2J̄± + 1)∓ 35

18] K = 3 [∓ 1
63]

K = 4 476
42471[−(2J̄± + 1)± 77

17] K = 4 2
63[−(2J̄± + 1)∓ 5

2 ]

Sm3+ f 5 nh = 9 6H5/2 Yb3+ f 13 nh = 1 2F7/2

K = 0 3
14[(2J̄± + 1)± 4

9 ] K = 0 1
42[(2J̄± + 1)± 2]

K = 1 10
147[(2J̄± + 1)∓ 23

45] K = 1 1
21[(2J̄± + 1)± 2]

K = 2 13
441[(2J̄± + 1)± 12

13] K = 2 1
21[(2J̄± + 1)± 2]

K = 3 [∓ 221
9261] K = 3 1

42[(2J̄± + 1)± 2]

K = 4 13
2646[−(2J̄± + 1)∓ 20

3 ] K = 4 1
42[(2J̄± + 1)± 2]

4. Lanthanide ions

For the chosen model of a resonant lanthanide ion the mean value of the matrix elementZ

in 〈f 〉 can be written in the form

〈Z(µ;µ:R0)〉 = 8
∑
K

C(K) · H(K)9µ(K). (4.1)
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Table 3. (Continued)

Eu3+ f 6 nh = 8 7F0

K = 0 4
21[(2J̄± + 1)± 1

3 ]

Gd3+ f 7 nh = 7 8S7/2

K = 0 1
6[(2J̄± + 1) ]

K = 1 [± 2
9 ]

Tb3+ f 8 nh = 6 7F6

K = 0 1
7[(2J̄± + 1)± 1

3 ]

K = 1 1
21[(2J̄± + 1)± 8

3 ]

K = 2 1
21[−(2J̄± + 1)± 2]

K = 3 1
42[(2J̄± + 1)∓ 2]

K = 4 1
42[−(2J̄± + 1)± 2]

The scalar product ofC(K) and H(K) is the subject of table 1. The entries depend on two
Euler angles,α andβ, used to define the local principal axes of quantization of the resonant
ion. In general, these angles will depend on the position of the ion in the magnetic unit cell.

The quantity that contains the atomic and thermodynamic properties of the ion is

9µ(K) = (−1)K(2K + 1)1/2
(
J K J

−J 0 J

){
2 K 2
3 1 3

}
(µ||T (K: J̄ )||µ)FJ (K) (4.2)

and it is defined in accord with the general expression for an E2 event (3.1), and (3.6)
and (3.8). The dependence of9 on the core state arises from the dependence onJ̄ of the
reduced matrix element. Looking at (3.8) reveals that, in (4.2) the product of the 3j -symbol
and the reduced matrix element is equal to the diagonal matrix element ofT K0 evaluated for
the stateµ and the valueM = J . The labelµ represents the quantum numbers required to
define the state obtained from Hund’s rules. Using for the reduced matrix element in (4.2)
results given by Lovesey and Balcar (1997a) we have obtained the entries in table 3, which
enable one to construct9µ(K).

By way of illustration of the use of the entries in tables 1–3, let us consider the entries for
f 7. Of course, having a half-filled valence shell, this ion has a particularly simple scattering
length. For the matrix element in the numerator of the mean value of the resonant scattering
length we obtain

〈Z〉 = 1

6
8

{
(2J̄ + 1)C(0)0 H

(0)
0 ±

4

3
C(1) · H(1)F7/2(1)

}
. (4.3)

Here, the plus sign refers to the L3 absorption edge(J̄ = 3
2) and the minus sign refers to

the L2 absorption edge(J̄ = 1
2).

In the formula for〈f 〉 it is the sum overR0 and the spatial coherence factor exp(ik·R0)

that generate the Bragg condition fork. If the Euler angles are independent ofR0 it follows
that all of the terms in the sum overK in (4.1) can contribute to the intensity of a Bragg
peak. Looking at (4.3), we see that this will mean contributions from terms withK = 0 and
1. When the secondary beam is analysed forπ -polarization, the entries in table 1 labelled
π ′σ are appropriate, and we find

|〈f 〉|2π ′σ =
{

1

90
(qe)28

}2 [F7/2(1) sin( 3
2θ + α) sinβ]2

[(E −1)2+ ( 1
20)

2]
. (4.4)
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The intensity at the L2 and L3 edges is the same, apart from differences inE, 1 and0. It
is interesting to note that the scattering is zero if the magnetic axis is perpendicular to the
plane of scattering. By referring to table 2 we see thatFJ (1) is the normalized magnetic
moment of the resonant ion. For theσ ′σ -channel of scattering the result for|〈f 〉|2 is slightly
richer in its structure, that is,

|〈f 〉|2σ ′σ =
{

1

60
(qe)28

}2{[
(E −1)(2J̄ + 1) cosθ ± 0

3
F7/2(1) sinθ cosβ

]2

+
[
0

2
(2J̄ + 1) cosθ ∓ 2

3
(E −1)F7/2(1) sinθ cosβ

]2}
×
[
(E −1)2+

(
1

2
0

)2]−2

. (4.5)

Evidently, the intensity is different at the L2 and L3 absorption edges, for reasons other than
differences at the two edges inE, 1 and0. The intensity is independent of the magnetic
moment of the ion if this lies in the plane of scattering. On a general note, when the
polarization in the secondary beam of x-rays is not analysed, the observed intensity is the
sum of the intensities in the two scattering channels.

Next consider the situation in which the arrangement of the magnetic moments is a
simple spiral with a pitch that is incommensurate with the chemical unit cell of the crystal.
For such an arrangement one anticipates Bragg reflections that are satellites to the Bragg
reflections indexed by the chemical crystal lattice. No such satellite reflections will be
observed if the axis of the spiral is perpendicular to the plane of scattering. For, in this
case, the moments are contained in the plane and, according to (3.4),β = π/2 andα is the
turn angle between planes in the spiral arrangement of the moments. With this choice ofβ

the σ ′σ -intensity contains no information on the magnetic moments, and the turn angle in
(4.4) does not depend on thex- andy-components ofR0 that occur in the spatial coherence
factor.

As a second case, let us consider the axis of the spiral in the plane of scattering. Now
β is the turn angle and a first-order satellite can be observed in both theσ ′σ - and π ′σ -
channels of scattering. For f7 there are no satellites with an order larger than one, because
the maximum value ofK = 1. The intensity forσ ′σ -scattering at the satellite reflection is
found from (4.5):

|〈f 〉|2σ ′σ =
{

1

180
(qe)28

}2 [F7/2(1) sinθ ]2

[(E −1)2+ ( 1
20)

2]
. (4.6)

The corresponding expression forπ ′σ -scattering is the same except that sinθ is replaced
by sin( 3

2θ + α). Hence,π ′σ -scattering depends on the orientation of the axis of the spiral
with respect tok, and, should the two vectors be aligned,α = π/2. The intensity of the
first-order satellite does not depend onJ̄ .

Entries in table 1 have been expressed in terms of cosnβ and sinnβ to facilitate the
identification of contributions to a satellite of ordern. The maximum value ofn isK, andn
is even or odd according to whetherK is even or odd. One should notice that components
with K odd areπ/2 out of phase with theK-even components.

The dependence of the mean scattering length on the thermodynamic state of the resonant
ion is carried by the quantitiesFJ (K), found in table 2. From their definition, these
quantities have a magnitude of one for the saturated state, and thus each term in the sum
overK in (4.1) for this state has an equal thermodynamic weight. Moreover, the definition
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of FJ (K) is such that forK > 0 the trace of the polynomial inM is zero. From this
property we conclude thatFJ (K) = 0 at an infinite temperature.

By way of an orientation to the magnitude ofFJ (K) at a relatively high temperature,
just less than the critical temperatureTc below which there is spontaneous magnetic order,
we appeal to the molecular-field model. The Heisenberg exchange interaction responsible
for the spontaneous ordering is assumed to be isotropic in spin space, and we do not include
single-site anisotropy energies. First, let us recall the well-known result

FJ (1) = (J + 1)

{
10

(
Tc

T
− 1

)/
3{2J (J + 1)+ 1}

}1/2

(4.7)

whereT is the temperature. ForK > 1 we find thatFJ (K) is proportional toFJ (1) raised
to the powerK, a result that might be anticipated. Specifically

FJ (2) = 3(2J + 3)

10(J + 1)
{FJ (1)}2 (4.8)

and

FJ (3) = 3

10

{2J (J + 1)+ 1}{3J (J + 1)− 1}{FJ (1)}3
(J − 1)(2J − 1)(J + 1)2

. (4.9)

From these findings we conclude that, at a temperature close toTc, whereFJ (1) � 1, the
high-order(K > 1) terms in (4.1) have by comparison toFJ (1) a very strong dependence
on temperature and a small weight.

The entries in table 3 can be interpreted in terms of various atomic quantities. This might
have some merit for the low-order terms inK because the atomic quantities are relatively
simple and have a genuine physical appeal. However, forK > 2 the atomic quantities are
complicated objects, made up of high powers of the orbital angular momentum operator,
and thus are less amenable to interpretation by physical intuition.

For an E2 absorption event and a valence shell with angular momentuml = 3,

9µ(0) = 1

42

{
(2J̄ + 1)nh± 4

3

〈∑
s · l

〉}
. (4.10)

Here, nh is the number of holes in the valence shell, and〈∑ s · l〉 is the mean value
of the spin–orbit operator of the holes. The corresponding expression for9µ(1) contains
the reduced matrix elements of the spin (S), orbital angular momentum (L) and magnetic
dipole-(T ) operators. One finds

9µ(1) = 1

63
FJ (1)

{
J

(J + 1)(2J + 1)

}1/2

× {(2J̄ + 1)(µ||L||µ)± 4[(µ||S||µ)+ 3(µ||T ||µ)]}. (4.11)

As an example of the use of this result let us consider Tb3+. Hund’s rules giveL = S = 3
andJ = 6, and the reduced matrix elements are

(µ||L||µ) = (µ||S||µ) = (273/2)1/2 and (µ||T ||µ) = −1

9
(µ||L||µ).

Inserting these values in (4.11), we obtain the entry in table 3. Lastly,

9µ(2) = 2

315
FJ (2)

{
J (2J − 1)

(J + 1)(2J + 1)(2J + 3)

}1/2

×
{
(2J̄ + 1)(µ||Q||µ)± 2

5
[10(µ||P ||µ)+ 3(µ||R||µ)]

}
. (4.12)
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In this result,Q is the quadrupole operator for orbital angular momentum whileP andR,
like T in (4.11), combine spin and orbital angular momentum operators; complete details
are found in Lovesey and Balcar (1997b).

A few entries in table 3 warrant some comments. First, the null values for Eu3+ and
K > 0 are a consequence of the null value forJ . Similarly, there are just two entries for
Gd3+ because it hasL = 0.

The last feature of table 3 that we comment on is the absence in four ions of a term
2J̄ + 1 for K = 3. The origin of this feature is a null value for the Racah unit tensor with
an orbital angular momentum of rank 3 andnh = 2, 5, 9 and 12. On going beyond the
specification of the valence shell by Hund’s rules, and including the full multiplet, small
amounts of non-zero unit tensors contribute to the coefficient of 2J̄ + 1 (Carra 1997). For
lanthanide ions such effects are usually small corrections to the results obtained using a
state specified by Hund’s rules, i.e. the valence states have a high purity. To round off
this comment, let us look at the mean values of the operatorsS, L andT for Tb3+. Using
the previously given reduced matrix elements, the mean values for the state specified by
Hund’s rules andM = J are 〈S〉 = 〈L〉 = 3 and〈T 〉 = −1/3. These results are compared
with values obtained from a calculation including the full multiplet and unjustified values
of the Slater integrals (Teramuraet al 1996), namely,〈S〉 = 2.943, 〈L〉 = 3.057 and
〈T 〉 = −0.243. It is notable that, for this particular case, the departure in〈T 〉 is as large as
27%, whereas the departures in〈S〉 and〈L〉 are indeed small.

5. Core-level structure in the scattering length

The results in the previous section are based on an idealized scattering length. In this
approximation the resonant denominator in〈f 〉 is characterized by two constants,1 and0.
The numerator, or the integrated weight, is calculated without approximation for an atomic
model of the valence shell. It is assumed, in this picture of events, thatJ̄ is a good quantum
number, which uniquely labels the resonant contributions for a given core state.

An improved picture of events is obtained by allowing for structure in the resonant
contribution to〈f 〉 derived by lifting its degeneracy with respect to the magnetic quantum
number for the hole in the core state,M̄. In this case, for a given̄J one admits 2̄J + 1
resonant contributions that add coherently for a particular channel of scattering. The sum
of the weights attached to the 2J̄ + 1 contributions equals the weight predicted by the
idealized scattering length. Also, the weight in the contribution labelled byJ̄ and M̄ is
again expressed in terms of Racah unit tensors for the ground state of the valence shell.
Now, however, the unit tensors are nested in a sum, and their rank is not tied to the rank of
the spherical tensorH(K), as it is in the previously reported work. The details of the theory
are set out by Lovesey (1997).

In the remainder of this section we explore the theory applied to the E2 contribution to
〈f 〉, and evaluate it for Bragg diffraction at a first-order satellite from a spiral arrangement
of the resonant ions. To this end we refer back to (3.6), to learn that with a unit tensor of
rankx there is a spherical harmonicC(x)m0

(β, α). A first-order satellite receives contributions
from odd-rank spherical harmonics, as we saw in section 4. Hence, in the matrix element
Z(µ;µ:R0) the Bragg condition selects terms withx odd. Another important aspect of
the calculation is that each contribution of rankx is weighted by a thermal factorFJ (x).
It has been shown that at an elevated temperature the magnitude of the thermal factors
decrease strongly with increasing rank. We limit the subsequent discussion to the dominant
thermal factor, namely the rank-one factor, since spiral arrangements of the ions in rare-
earth metals occur in a window of temperature immediately below the ordering temperature
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(Jensen and Mackintosh 1991). Consequently, for our immediate purpose the scattering
length is proportional toFJ (1) and, furthermore, the orientation factors in it are derived
from C(1)m0

(β, α).
Using η to denote the quantum labels of the core hole, one finds

〈Z(µ;µ:R0)〉η = 8FJ (1)
∑
Km0

(2K + 1)1/2C(1)m0
(β, α)H

(K)
−m0
S(K)m0

(η) (5.1)

where

SKm0
(η) = −(2J̄ + 1)

√
3
∑
r

(2r + 1)(−1)J̄−M̄
(
J̄ r J̄

−M̄ 0 M̄

)(
K r 1
−m0 0 m0

)
×
∑
ab

〈µ|W(ab)1|µ〉(2a + 1)(2b + 1)
∑
y

(2y + 1)

{
K r 1
a b y

}

×
{ 2 3 1

2 3 1
K b y

}{1/2 J̄ 1
1/2 J̄ 1
a r y

}
. (5.2)

In this expression the matrix element of the unit tensorW(ab)1 is evaluated forM = J , and
the arguments of thenj -symbols have been assigned values appropriate to an E2 absorption
event and a 4f valence shell.

The 2J̄ + 1 degeneracy is lifted by an exchange interaction which acts on the spin of
the ejected electron, i.e. the exchange energy is proportional tog− 1 whereg is the Land́e
factor. ForJ̄ = 1± 1

2 one finds

1(M̄) = ±1

3
M̄10 (5.3)

where10 sets the size of the exchange interaction, and the energy of the absorption edge
is chosen as the origin of the energy scale. At present10 is a free parameter.

Table 4. The matrix element〈Z〉η to be used in (5.1) is obtained by multiplying the entries in
the table by8FJ (1)/1764. The numerical values are appropriate for Tb3+, f 8 with S = L = 3
andJ = 6.

σ ′σ π ′σ

L2 −(1/5)[10M̄ cosθ + 7i sinθ ] cosβ (1/5)[6M̄ cos( 3
2θ + α)+ 7i sin( 3

2θ + α)] sinβ

L3 [(1/5)M̄(131− 16M̄2) cosθ [(1/2)M̄(7M̄2 − 67/4) cos( 3
2θ + α)

+ (i/2)(19M̄2 − 39/4) sinθ ] cosβ + (i/4)(19M̄2 − 207/4) sin( 3
2θ + α)] sinβ

To illustrate the foregoing theory we have used it to calculate the scattering length for
Tb3+. Our results for the matrix element (5.1) are obtained from the entries in table 4.

If the axis of the spiral arrangement of the terbium ions lies in the plane of scattering,
spanned by the axesx and y, the magnetic moments are in a plane that is parallel to the
z-axis, and the intersection with the plane of scattering is at an angleα with respect to the
x-axis. For a first-order satellite the Bragg condition selects exp(iβ) in sinβ and cosβ,
since β is the turn angle for the spiral. Looking at the entries in table 4 it is notable
that the terms even and odd in̄M are 90◦ out of phase, and the cross-sections are even
functions of the primary energy. Regarding the dependence of〈f 〉 on θ , the entries in
table 4 can be compared to the findings derived from the idealized scattering length, which
means the entries in table 1 forK = 1. One notes that the improved picture of the resonant
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Figure 1. The displayed quantity is|〈f 〉|2 where 〈f 〉 is defined in (5.4). The results are
appropriate for a first-order satellite from the spiral phase of terbium metal, and the configuration
4f 8. To obtain the value of the diffraction cross-section multiply the numerical values in a
drawing by ((qe)28FJ (1)/3528)2. The primary energyE is measured relative to an edge
in units of 10, and γ = 0.410. Results for theσ ′σ - and π ′σ -channels of scattering are,
respectively, denoted by a thin solid and a thin dotted line, and the sum of the two channels is
given by a thick solid line. At each absorption edgeα = 0 or π/2, and for eachα the values
of θ are 32◦, 60◦ or 66◦; the values of the angles are given on each panel. The axis of the
spiral lies in the plane of scattering and it is perpendicular (parallel) to the scattering vector,
k, for α = 0 (π/2). Note that in the calculationsθ is constant at an edge, whereas strictly it
varies withE so as to satisfyk = (2E/h̄c) sin(θ/2) with k fixed by the position of the Bragg
reflection (here a first-order satellite) in reciprocal space. In the present case the variation inθ

with E in a panel is expected to be very slight because10 is very small compared to the energy
of an absorption edge, which is of the order of 8 keV.
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Figure 1. (Continued)

scattering length gives a significantly different dependence onθ to that found with the
idealized scattering length.

In figure 1 we display|〈f 〉|2 as a function of the primary energy, for various values of
θ andα, at the L2 and L3 absorption edges. For〈f 〉 we use

〈f 〉 = −(qe)2
∑
M̄

〈Z(µ;µ:R0)〉η
(E −1(M̄)+ (i/2)γ ) (5.4)

with 〈Z〉η constructed from the entries in table 4. These are evaluated with cosβ → 1/2
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Figure 1. (Continued)

and sinβ →−i/2, which are appropriate for a first-order satellite reflection. Thus, at each
absorption edge,|〈f 〉|2 is the coherent sum of 2̄J + 1 oscillators. Forγ we have chosen a
constant value, independent of both̄M and J̄ .

Looking at the panels in figure 1, perhaps the first thing that comes to one’s attention is
that the maximum intensities at the L2 and L3 edges differ by a factor of about 100. This
factor is in line with the prediction from table 3, based on the idealized scattering length,
since the entry forK = 1 differs by 10 at the L2 and L3 edges. Other factors which enter
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Figure 1. (Continued)

the relative intensity at the two edges, and are not taken into account in this observation,
are that the E2 cross-section scales withE8 andγ might depend onJ̄ .

Using the idealized scattering length as a point of reference for the intensity, one
anticipates that in theπ ′σ -channel the intensity depends onα while in the σ ′σ -channel
it is independent ofα. The panels in figure 1 do indeed show this trend withα; for
α = π/2 theσ ′σ -channel dominates and, forα = 0, the intensities in the two channels are
similar in size, except at the L3 edge and forθ = 32◦. At the L3 edge there are significant
changes in the shapes of the lines as a function ofθ and they are most pronounced in the
σ ′σ -channel. The total intensity at the L3 edge decreases with increasingθ , by as much as
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Figure 1. (Continued)

almost a factor of three forα = π/2, and at the L2 edge the fractional change withθ is
much smaller and in the opposite direction.

6. Polarization effects

A primary beam from a synchrotron source of x-rays is adequately described by a
Stokes vector with two parameters, and following Lovesey and Collins (1996) we find
P = (0, P2, P3) with P 2

2 + P 2
3 6 1. The equality is achieved for a beam with complete

polarization. In previous sections we have considered pureσ -polarization which is described
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Figure 1. (Continued)

by P2 = 0 andP3 = +1. The parameterP2 is the mean helicity in the beam.
Let us label the four scattering lengths following the scheme used in table 1, which

is ε′ε for primary and secondary polarizationε and ε′, respectively. The corresponding
scattering length we denote simply by(ε′ε), i.e. (ε′ε) ≡ 〈f 〉(ε′ε). With this convention the
cross-section is

|〈f 〉|2 = P2 Im{(σ ′σ)(σ ′π)∗ + (π ′σ)(π ′π)∗} + 1

2
(1+ P3){|(σ ′σ)|2+ |(π ′σ)|2}

+ 1

2
(1− P3){|(π ′π)|2+ |(σ ′π)|2}. (6.1)
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At a synchrotron source a standard setting isP2 = 0 andP3 ∼ 1.0.
As an illustration of the cross-section (6.1) we evaluate it for the model of a lanthanide

ion (4.1). The arrangement of the ions is described in the preceding section, and we again
treat the intensity of the first-order satellite using the tensor of rank one, which should
describe to a good approximation the properties at a high temperature. In the following
result, the coefficient of(1+ P3)/2 is taken from table 1. The remaining components are
readily derived using results given by Lovesey (1996). In making the calculations it is
helpful to use the identity

{HK
m0
}π ′σ = (−1)K({HK

m0
}σ ′π )∗.

The cross-section for the first-order satellite is the product of

{ 1
40(qe)

289µ(1)}2
{(E −1)2+ ( 1

20)
2}J̄

and the following geometric factor:

±P2 sinθ

{
sin

(
α − 3θ

2

)
+ 4 cosθ sin

(
α + 3θ

2

)}
+ 1

2
(1+ P3)

{
sin2 θ + sin2

(
α + 3θ

2

)}
+ 1

2
(1− P3){4 sin2 2θ + sin2

(
α − 3θ

2

)}
. (6.2)

A few comments are in order about the first term, proportional to the mean helicity in the
beam. The sign goes withk±Q = τ whereQ is the wave vector of the spiral (turn angle
β = Q ·R0) andτ is a reciprocal-lattice vector. It is interesting to observe that the term
in P2 can vanish, e.g.θ = 60◦ andα = π/2, and it is not symmetrical with respect toα
and−α. Addressing the other two terms in (6.2), note that the coefficient of 1− P3 can
be much larger than the coefficient of 1+ P3. Consider the axis of the spiral aligned with
k (α = π/2) and a scattering angleθ = 60◦. For this setting the ratio of the factors is 4,
and takingP3 = 0.90 the third term in the cross-section is as much as 21% of the second
term.

The cross-section for a first-order satellite that we have derived is proportional to the
square of the magnetic moment, due to the presence in the cross-section of the factor
92
µ(1). For the same set of basic assumptions, a different dependence of the cross-section

on temperature is found if the Bragg reflection is indexed by the chemical unit cell. This
effect is present in our discussion of diffraction by gadolinium. To illustrate it in a different
context we will now calculate the cross-section proportional toP2, for a Bragg reflection
from a ferromagnetic arrangement of the ions. We limit the calculation to the lowest-order
tensors, and at an elevated temperature they certainly give the dominant contribution to the
cross-section.

An inspection of the products in the contribution proportional toP2 reveals that in
the double sum, in which a term is the product of two tensors with ranksK andK ′, the
non-zero parts of the sum haveK + K ′ = odd integer. (A term in the double sum with
K +K ′ = even is purely real.) A straightforward calculation leads to the result

P2 Im{(σ ′σ)(σ ′π)∗ + (π ′σ)(π ′π)∗} = −1

2
P2
( 1

10(qe)
28)29µ(0)9µ(1)

((E −1)2+ ( 1
20)

2)J̄

× sinβ

{
cosθ sin

(
α − 3θ

2

)
+ cos 2θ sin

(
α + 3θ

2

)}
. (6.3)

Several features of this result deserve comment. First, the result is proportional to sinβ

and it therefore vanishes if the magnetic moment is perpendicular to the plane of scattering.
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Secondly, the other trigonometric factor is zero for certainθ and α, e.g. θ = 60◦ and
α = π/2, andθ = 120◦ and α = 0. Lastly, the result is proportional to the magnetic
moment. This feature is in keeping with physical intuition, scilicet, in the cross-section there
is a product of the two axial vectors in the problem (helicity and the magnetic moment).
Set against this, there is something of a need to comment on the preceding result (6.2) for
a first-order satellite in whichP2 is multiplied by the square of the magnetic moment.

In this regard, the essential features in the physics behind the result (6.2) is that for
a satellite reflection the Bragg condition selects components from cosnβ and sinnβ and
these are out of phase by 90◦. The outcome is that the diagonal and off-diagonal channels
of scattering are out of phase by 90◦, and so even forK = K ′ = 1 the coefficient ofP2

is not zero. By contrast, in (6.3) for a ferromagnetic reflection all channels have purely
real or purely imaginary amplitudes according to whether the rank is even or odd. As we
have previously noted, the non-zero parts in the coefficient ofP2 are products of tensors
whose ranks satisfyK +K ′ = odd integer. At the level of approximation to which we are
working, the coefficients of 1±P3 do not depend on the magnetic state of the resonant ion.

In our discussion of the polarization of the secondary beam we start with the linear
polarization which is described by parameterP ′3. Using again results from Lovesey and
Collins (1996), and settingP = (0, 0, P3), we find

P ′3 = {(1+ P3)[|(σ ′σ)|2− |(π ′σ)|2] + (1− P3)[|(σ ′π)|2− |(π ′π)|2]}/(2|〈f 〉|2). (6.4)

Here, the denominator is obtained from (6.1) withP2 = 0.
We evaluate (6.4) for a first-order satellite from a spiral arrangement of the ions, with

the axis of the spiral parallel to the plane of scattering. As in the preceding treatment of
this model, we limit the discussion to the lowest-rank tensor. The result is

P ′3 = −
{
(1+ P3) sin

(
α + θ

2

)
sin

(
α + 5θ

2

)
+ (1− P3)

[
4 sin2 2θ − sin2

(
α − 3θ

2

)]}/
(2× equation(6.2)) (6.5)

where the denominator is twice the value of (6.2) withP2 = 0. Note that (6.5) holds for
the L2 and L3 absorption edges. If we include in the evaluation of (6.4) the rank-three
tensor,P ′3 can be different at the two edges because, in this case, the numerator and the
denominator are linear combinations of92

µ(1) and92
µ(3). By the same argument, when

92
µ(3) is included in the evaluation of (6.4),P ′3 will depend on the temperature. However,

as we have stressed, at an elevated temperature92
µ(1)� 92

µ(3).
The result (6.5) withP3 = 0.9 is displayed in figure 2 (dashed curve). It is shown as a

function of θ , the angle through which the x-ray beam is deflected, forα = π/2. Results
for α = 0 are obtained simply by inverting the graph in figure 2 about the valueθ = 90◦.
For α = π/2 one finds, atθ = 0◦, the secondary polarizationP ′3 = −P3, and with the
opposite extreme value,θ = 180◦, it has the valueP ′3 = −5(6− 5P3)/(43− 30P3). For
α = π/4 one finds thatP ′3 is symmetric aboutθ = 90◦, whereP ′3 = 1, and forθ = 0◦

and 180◦, P ′3 = −P3. The variation ofP ′3 with θ is pronounced and this should be easy to
monitor in an appropriate experiment.

For a primary beam withP = (0, 0, P3) the mean helicity in the secondary beam is

P ′2 = ∓Im{(1+ P3)(σ
′σ)(π ′σ)∗ + (1− P3)(σ

′π)(π ′π)∗}/|〈f 〉|2 (6.6)

with |〈f 〉|2 obtained from (6.1). As there is no circular polarization in the primary beam
(P2 = 0), equation (6.6) gives the circular polarization created in the scattering event
recorded at the settingk ±Q = τ .
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Figure 2. States of polarization in the secondary beam, described by the parametersP ′2 andP ′3,
are displayed as a function ofθ for a first-order satellite, for whichQ+ k = τ , andP3 = 0.9
andα = π/2. The values shown in the graph are forP ′3 (dashed curve) obtained from (6.5)
andP ′2 (solid curve) obtained from (6.7) taken with the positive sign. For the chosen value of
α, the axis of the spiral arrangement of the ions is aligned withk.

Evaluated for our model of a first-order satellite, equation (6.6) forP ′2 can be different
from zero because the diagonal and the off-diagonal scattering lengths differ in phase by
90◦. We find

P ′2 = ± sinθ

{
(1+ P3) sin

(
α + 3θ

2

)
+ 4(1− P3) cosθ sin

(
α − 3θ

2

)}/
equation(6.2)

(6.7)

where, as in the companion expression forP ′3, the denominator is the value of (6.2) for
P2 = 0. Evaluated forα = π/2, so that the axis of the spiral is aligned with the scattering
vector,

P ′2 = 0 θ = 0◦

and

P ′2 = ∓6(5P3− 3)/(43− 30P3) θ = 180◦.

Figure 2 containsP ′2 for α = π/2, P3 = 0.9 andk +Q = τ as a function ofθ . To obtain
a value ofP ′2 for α = 0 from the results in figure 2, invert the graph about 90◦ and change
the sign of the displayed value. It is interesting to find thatP ′2 is a strong signature of the
scattering, attaining values in the range−0.93 6 P ′2 6 0.89 for P3 = 0.9. Our remarks
aboutP ′3 concerning its dependence on̄J and the temperature also apply toP ′2.

7. Summary

We have calculated the E2 (electric quadrupole) contribution to the scattering length using
an atomic model for the resonant ion. The atomic model is expected to be more than
reasonable for lanthanide ions.

With an idealized form for the scattering length, in which an absorption edge is uniquely
specified by the total angular momentum of the core state that accepts a hole from the valence
shell, our most general expression for the Bragg scattering length is obtained by combining
(2.1), and (3.1) and (3.5). The atomic matrix element in the scattering length depends on
the properties of the valence shell, of course. These properties can be expressed in terms of
matrix elements of various atomic operators, constructed with the spin and orbital angular
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momentum operators of the valence holes, and examples of the expressions are found in
(4.10)–(4.12). Sum rules, often used to analyse data, on the dichroic signal in the attenuation
coefficient are contained within the idealized scattering length.

By way of an orientation to the theory described in the foregoing paragraph we have
evaluated it for a simple and realistic description of a lanthanide ion. The simplification
made is to take the atomic matrix element as diagonal with respect to the magnetic quantum
numbers. For this special case, in (3.5) the element of the rotation matrix reduces to
a spherical harmonic. The angular dependence of the scattering length is then easy to
evaluate, and our results are listed in table 1. The thermodynamic and atomic properties
of the valence shell are the subjects of tables 2 and 3. The atomic properties in table 3
are for the ground state specified by Hund’s rules, and for lanthanide ions this is expected
to be a good approximation. The entries in table 1 describe in full the case of a complete
polarization in the primary beam which is perpendicular to the plane of scattering. In
section 6 we provide the cross-section, and an illustrative example for a first-order satellite,
appropriate when the primary beam contains circular polarization, and less-than-complete
linear polarization. Also considered is the polarization in the secondary beam.

If the wave function for the valence shell is not diagonal with respect to the magnetic
quantum numbers the complete form of the atomic matrix element is needed, and in this
case (3.10) is the required expression. One can readily incorporate a knowledge of the
valence shell better than the specification by Hund’s rules simply by entering the superior
estimates in (4.10)–(4.12). Alternatively, one can use (3.5) and the expansion of the atomic
matrix element in terms of Racah unit tensors (Lovesey and Balcar 1997a).

Core-level structure in the scattering length can be introduced by using an expression
for the scattering length derived by Lovesey (1997). In this paper, its use is illustrated in
a discussion of diffraction at the first-order satellite from the spiral arrangement of ions in
terbium metal. The prediction is that at the L3 edge the diffraction signal as a function
of energy can be highly structured, and the structure changes with the setting of the spiral
relative to the geometry of the primary and secondary beams. On the other hand, the shape
of the line at the L2 edge, when compared to that at the L3 edge, is almost without structure.

Previous work by Hill and McMorrow (1996) on the theory of Bragg diffraction
enhanced by an E2 absorption event focuses on the geometric features of the diffraction
signal, and they mention attempts at the calculation of the atomic matrix element. In the
language for an E2 event used in this paper, which follows Lovesey (1996), their main
results are values for the spherical tensorH(K), and for a diagonal atomic matrix element
their findings condense to the entries in table 1.
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